
KinePose: A temporally optimized inverse kinematics technique for
6DOF human pose estimation with biomechanical constraints

Kevin Gildea1, Clara Mercadal-Baudart1, Richard Blythman1,2, Aljosa Smolic2, and Ciaran Simms1

1School of Engineering, Trinity College Dublin
2V-SENSE, School of Computer Science & Statistics, Trinity College Dublin

Supplementary Material



A The 3D rotation group and vector mapping

Basis vectors are used to define the directions of the cardinal axes of an object’s local coordinate system. For
example, object ‘0’ is aligned with the global coordinate system, so the basis vector system can be expressed
as a 3×3 identity matrix (I ), with each of the basis vectors

{−→e 1
}0,

{−→e 2
}0, and

{−→e 3
}0 extending 1 unit from the

origin along each of the cardinal axes:

Furthermore, one coordinate system defined using basis vector system e2 can be represented with respect
to another coordinate system e1 by multiplying the latter by the 3x3 rotation matrix

[
R2,1

]
. If we know the

orientations of both of these coordinate systems with respect to a 3r d coordinate system e0, i.e. the global
coordinate system, then we can find

[
R2,1

]
:

Euler’s rotation theorem states that, in three-dimensional space, displacement from an initial orientation e1

to final orientation e2 is achieved by rotation through an angle about an axis with same coordinate matrix in
both bases. This axis is called the Euler axis, or the Screw axis, −→n , and an associated angle Φ:



Now, consider the case where instead of having two complete coordinate systems represented by basis
vectors, we only have two vectors −→a and

−→
b , which we want to use to represent a rotation between the two

coordinate systems. There will not be a unique solution to this problem, so we need to define the Screw axis
about which we rotate. Two obvious candidate axes that can be chosen for this are:

• the cross product of the vectors, which will be mutually perpendicular to both −→a and
−→
b , or

• the sum of the normalized vectors â and b̂, which symmetrically bisects −→a and
−→
b

We can then relate the Euler axis-angle to the direction cosines of a rotation matrix using:

[
Râ→b̂

]
=

 n2
1 + (n2

2 +n2
3)cos(Φ) n1n2(1− cos(Φ))−n3si n(Φ) n1n3(1− cos(Φ))+n2si n(Φ)

n1n2(1− cos(Φ))+n3si n(Φ) n2
2 + (n2

1 +n2
3)cos(Φ) n2n3(1− cos(Φ))−n1si n(Φ)

n1n3(1− cos(Φ))−n2si n(Φ) n2n3(1− cos(Φ))+n1si n(Φ) n2
3 + (n2

1 +n2
2)cos(Φ)


We can use the two points obtained from these approaches, which we know are on the Euler axis solution

space, along with the origin to define the plane that contains all possible rotation axes:

p1 =
{
0 0 0

}
,p2 = â+b̂∥∥â+b̂

∥∥ ,p2 = â×b̂∥∥â×b̂
∥∥ .



We can then define the Euler axis solution space as all unit vectors on the plane, for α : [−π,π]:

−→n α =


p1,1 + cos(α)(p2,1 −p1,1)+ si n(α)(p3,1 −p1,1)
p1,2 + cos(α)(p2,1 −p1,1)+ si n(α)(p3,1 −p1,1)
p1,3 + cos(α)(p2,1 −p1,1)+ si n(α)(p3,1 −p1,1)

 .

Projecting vectors â and b̂ to lay on the base of a cone with the Euler axis as the cone’s axis, we can
determine the associated Euler/screw angles (Φ), i.e., the azimuth angle:

âα = â×−→n α

∥â×−→n α∥ , b̂α = b̂×−→n α∥∥b̂×−→n α

∥∥ ,

Φα = cos−1(âα · b̂α).

Now, we can formulate all possible rotation matrices representing all possible Euler axis-angle combina-
tions, i.e. the Euler axis-angle solution space (EAS) (see Fig. 1):

[
Râ→b̂

]E AS = n2
α,1 + (n2

α,2 +n2
α,3)cos(Φα) nα,1nα,2(1− cos(Φα))−nα,3si n(Φα) nα,1nα,3(1− cos(Φα))+nα,2si n(Φα)

nα,1nα,2(1− cos(Φα))+nα,3si n(Φα) n2
α,2 + (n2

α,1 +n2
α,3)cos(Φα) nα,2nα,3(1− cos(Φα))−nα,1si n(Φα)

nα,1nα,3(1− cos(Φα))−nα,2si n(Φα) nα,2nα,3(1− cos(Φα))+nα,1si n(Φα) n2
α,3 + (n2

α,1 +n2
α,2)cos(Φα)



Figure 1: The Euler axis-angle solution space (EAS) for mapping/retargeting incongruent vectors.

Therefore, with a lack of complete basis vector representation for the two coordinate systems, there are
infinite axis-angle combinations that can be applied to achieve a desired vector mapping/retargeting. However,
candidate Euler/Screw axes are constrained to be on the plane that symmetrically bisects the vectors (Fig. 1).



B Gimbal lock

For Cardan rotation order X (θ) → Y (φ) → Z (ψ), we have a rotation matrix
[
R2,1

]
:

[
R2,1

]=
1 0 0

0 cos(θ) −si n(θ)
0 si n(θ) cos(θ)

 cos(φ) 0 si n(φ)
0 1 0

−si n(φ) 0 cos(φ)

cos(ψ) −si n(ψ) 0
si n(ψ) cos(ψ) 0

0 0 1



When φ= π
2 +nπ:

=

1 0 0
0 cos(θ) −si n(θ)
0 si n(θ) cos(θ)

0 0 1
0 1 0
1 0 0

cos(ψ) −si n(ψ) 0
si n(ψ) cos(ψ) 0

0 0 1


Then, by trigonometry:

=

 0 0 1
cos(θ+ψ) cos(θ+ψ) 0
−cos(θ+ψ) si n(θ+ψ) 0


Relating our coefficients to direction cosines, i.e., r2,1

i , j = −→e 2
i · −→e 1

j , we see that the direction of the x axis

of the coordinate system post-rotation will always align with the z axis pre-rotation, i.e., since ̸ (−→e 2
i ,−→e 1

j ) =
cos−1(−→e 2

i ·−→e 1
j ), then ̸ (−→e 2

1,−→e 1
3) = 0, and ̸ (−→e 2

1,−→e 1
1), ̸ (−→e 2

1,−→e 1
2), ̸ (−→e 2

2,−→e 1
3), ̸ (−→e 2

3,−→e 1
3) = π

2 .



C Boundary cases for twist angle ambiguity

Here we investigate how the IK algorithms handle twist angle ambiguity in boundary cases with extended/straight
limbs (co-linear sequential links). This is demonstrated for two 15-frame motion sequences involving a phase
of bent limbs, and fully extended limbs:

Case 1: Bent limbs (frames 1-11) → Extended limbs (frames 13-15)

Case 2: Extended limbs (frames 1-3) → Bent limbs (frames 4-15)

Case 1 MP J AS1 errors for limb joints in the motion sequence are shown in Fig. 2. Note that 1a results in
the highest errors when limbs are extended, and improvements are achieved by 1b , 23, and 25.

Case 2 results are shown in Fig. 3. 1a , 1b , and 23 result in high errors when limbs are extended, and
improvements are only achieved by 25. 1b fails in this case because there are no preceding frames with bent
limbs to use as initialization. The accuracy of 23 is generally lower than 25 in this case because its initial batch
does not include frames with bent limbs, with lower peak errors throughout. However, there are cases where 25

under-performs 23.
See this video for visualisation.

https://youtu.be/ChMJLQLYbOA


Figure 2: MP J AS1 errors for limb joints in a 15-frame motion sequence involving an initial phase of bent limbs
(blue), followed by a phase extended limbs (orange) (mean values over 10 IK runs).



Figure 3: MP J AS1 errors for limb joints in a 15-frame motion sequence involving an initial phase of extended
limbs (orange), followed by a phase bent limbs (blue) (mean values over 10 IK runs).



D Accuracy for motion sequences with bent limbs only

Fig. 4 shows a comparison of average average angular errors for parameterized joints in the chain for motion
sequences involving motion with bent limbs throughout. In comparison to the results for motion sequences
involving phases of both bent and extended limbs (Fig. 6 in the main paper) the results are similar across all
algorithms, demonstrating that twist angle ambiguity is not as problematic for this kind of motion.

Figure 4: MPJAS1 by joint and algorithm, for motion sequences with bent limbs only.



E Convergence to local minimum

Convergence of local optimization methods depends on the initial guess. Since IK algorithms feed optimized
parameters from previous frames, having an inital guess closer to the target pose may be beneficial. Therefore,
in practical applications, the subject may initially adopt a pose similar to the rest pose. Alternatively, the initial
guess (i.e., Θ0 in Algorithm 1) for model parameters could be defined closer to the target pose. For this, we
include a tool for manual setting of the initial guess (Fig. 5).

Figure 5: Optional tool for manual setting of the initial guess for model parameters in frame 1.


	The 3D rotation group and vector mapping
	Gimbal lock
	Boundary cases for twist angle ambiguity
	Accuracy for motion sequences with bent limbs only
	Convergence to local minimum

