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Abstract1

Single cyclist/bicycle collisions are common and underreported in official statistics. In urban2
environments, light rail tram tracks are a frequent factor, however, they have not yet been the3
subject of engineering analysis. The prevalence of traffic camera footage in urban environments4
presents an opportunity for detailed site-specific safety insights.5

In this study, we present a video-based frequency and risk analysis for unsuccessful crossings6
on tram tracks in wet road conditions at 9 locations around Dublin city centre, Ireland. We7
also devise a predictive model for crossing success as a function of crossing angle for use in a8
surrogate safety measure framework.9

Modelling results show that crossing angle is a strong predictor of crossing success, and10
that cyclist velocity is not. Findings indicate that infrastructural planners should design11
for cyclist crossing angles of 30°or greater. We highlight the prevalence of external factors12
which limit crossing angles for cyclists. In particular, kerbs are a common factor, along with13
passing/approaching vehicles or other cyclists. Furthermore, we introduce a new Surrogate14
Measure of Safety (SMoS) for cyclist interactions with tram tracks, and demonstrate its utility15
with an open-source application (SafeCross), which is available through the project page.16

17
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1 Introduction20

Findings from (Gildea and Simms 2021) show that single cyclist collisions are unlikely to appear in21

police statistics. Specifically, the odds of cyclist-motorised vehicle collisions being reported to the22

police in Ireland are estimated to be 20 times greater than in Ireland, similar to international estimates23

(Shinar, Valero-Mora, van Strijp-Houtenbos, Haworth, Schramm, De Bruyne, Cavallo, Chliaoutakis,24

Dias, Ferraro, Fyhri, Sajatovic, Kuklane, Ledesma, Mascarell, Morandi, Muser, Otte, Papadakaki,25

Sanmartı́n, Dulf, Saplioglu, and Tzamalouka 2018). This bias leads to an underestimation of their26

importance among researchers and policymakers (Schepers, de Geus, van Cauwenberg, Ampe,27

and Engbers 2020). For this reason, while collision/injury prevention strategies for collisions with28

vehicles are well-investigated, strategies for mitigating single cyclist collisions are not.29

Common cyclist collision configurations and contributory factors for single cyclist collisions30

are investigated in (Gildea, Hall, and Simms 2021). Findings indicate that falls involving interactions31

with light rail tram tracks are common in the city of Dublin. Tram tracks were the most common32

infrastructural collision partner, and a contributing factor in 23% of single cyclist collisions (ibid.).33

Internationally, other self-reporting studies also highlight their importance, with 19% of cases in a34

study in Melbourne (Beck, Stevenson, Cameron, Oxley, Newstead, Olivier, Boufous, and Gabbe35

2019), and 13% of cases in a study in Switzerland (Hertach, Uhr, Niemann, and Cavegn 2018)36

involving tram tracks.37

A previous video analysis of cyclists crossing railway tracks found that the minimum safe38

approach angle for crossing railway tracks is 30° (Ling, Cherry, and Dhakal 2017), however, this39

study relied on visual assessments of crossing angles (10° bins), and it is unclear whether these40

findings also translate to light-rail tracks where there are frequent interactions with cyclists in41

crowded urban environments. Along with increasing popularity of cycling, many new light rail42
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systems are being implemented across Europe as part of a broader move towards sustainable transport43

(UITP 2019). Accordingly, further investigation is required to understand potential conflicts.44

As detailed data on crossing angles are not routinely captured in police, hospital, or insurance45

databases, and given the prevalence of traffic cameras along tram systems, video-based approaches46

have obvious potential for these cases. Traffic camera footage is often used for analysis of collisions47

(Johnson, Charlton, Oxley, and Newstead 2010; Ling, Cherry, and Dhakal 2017), as well as48

near-collision or near-miss incidents and Surrogate Measures of Safety (SMoS) or Surrogate Safety49

Measures (SSM), i.e., a safety-related indicator without the need for collision footage, allowing50

for rapid proactive assessment of potential areas of conflict. This approach is potentially more51

cost-effective than analysis of historic crash data analysis, and is well aligned with the proactive52

element of Safe System approach to road safety. A variety of SMoS metrics exist, e.g. Time To53

Collision (TTC) (Hayward 1971), Post-Encroachment Time (PET) (Allen, Shin, and Cooper 1978),54

or bicycle Deceleration Rate (DR) (Strauss, Zangenehpour, Miranda-Moreno, and Saunier 2017).55

Generally, these metrics are based on vehicle trajectories (direction, velocity, acceleration), and56

sometimes mass (Extended Delta-V) (Laureshyn, de Goede, Saunier, and Fyhri 2017), which are57

used as proxies for collision risk. Various open-source software exist for SMoS analysis with traffic58

camera footage, e.g., T-analyst1, Traffic Intelligence project2, and Surveillance Tracking Using Deep59

Learning (STRUDL)3. After collection of traffic camera footage, a common first step is camera60

calibration to determine the relationship between pixel coordinates and the ground-plane, after61

which road user tracking is performed. Tracking may be manual (e.g., T-analyst), or automatic (e.g.,62

STRUDL (Bornø Jensen, Ahrnbom, Kruithof, Åström, Nilsson, Ardö, Laureshyn, Johnsson, and63

Moeslund 2019)), i.e., using deep neural networks.64

1 https://bitbucket.org/TrafficAndRoads/tanalyst/wiki/Home/
2https://bitbucket.org/Nicolas/trafficintelligence/wiki/Home/
3https://github.com/ahrnbom/strudl/
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2 Study aims65

Therefore, this study aims to use traffic camera footage to identify site-specific safety issues between66

cyclists and tram tracks, correlate unsuccessful crossing risk with crossing trajectories, and devise a67

validated SMoS algorithm for future use in safety assessments.68

3 Methods69

3.1 Data collection70

Traffic camera footage was collected in October/November 2021 following ethical approval from the71

School of Engineering, Trinity College Dublin. This involved manual screening, annotation and72

extraction of cyclist interactions with tram tracks from 9 locations (10 cameras) in Dublin city centre73

(Figure 1). Locations with an established likelihood of cyclist-tram track conflicts were chosen74

based on findings from (Gildea, Hall, and Simms 2021), and feedback from experts in the city75

council. The analysis focuses on weekdays, daylight conditions, and peak commuting hours (Gildea76

and Simms 2021). Initially, a sample that included both dry and wet conditions was assessed, but a77

preliminary analysis found no falls during dry conditions. Wet road conditions are a significant78

factor for cyclist falls on tracks (Gildea, Hall, and Simms 2021; Ling, Cherry, and Dhakal 2017).79

Therefore, the final analysis focused on periods with wet road conditions.80

3.2 Track description and effective groove gap width81

Various light rail track profiles exist. The popular girder grooved rail types are limited to the82

European standards: Ri 59N, Ri 60N, IC, Ri52N, Ri53N, NP4a, and 35G. Rail heads are similar83
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Figure 1: Study locations in Dublin city centre.

across all types, however, the width of the groove gap differs. The Irish tram service (Luas) uses84

the Ri59N (Ri 59-R13) girder grooved rail in shared-space environments, i.e., most street-running85

sections and stops (Figure 18). Pavement/asphalt is set around the rail to support the shared use of86

the road.87

Larger groove gap widths present larger risks to crossing cyclists, and this is exacerbated88

by off-perpendicular crossing angles (<90°). This increased risk can be expressed in the form of89

an effective width of the groove gap (EW) when crossing at an angle (𝜃) (Skelton 2016). The90

relationship between 𝜃 and EW is plotted for various track types in Figure 2, showing EW tends to91

infinity as angle approaches 0°. Furthermore, as crossing angle reduces the differences between92

effective widths of the track types widens.93
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Figure 2: Effective track groove gap width (EW) by crossing angle (𝜃) for various track types. Some
of the curves overlap.

3.3 Frequency and risk analysis94

Using the collected footage, exposure and time-based risk analyses were performed to assess the95

rate of Unsuccessful Crossings (UCs) compared to Successful Crossings (SCs) at each recording96

site. UCs are here defined as falls and near-falls involving evidence of loss of control.97

3.4 Fall type taxonomy98

Three broad categories were defined for UCs (Figure 3).99
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Figure 3: The three defined categories for unsuccessful crossings (UCs).

3.5 Crossing angles and trajectories100

Footage of UCs, and a random sample of SCs were extracted for analysis. T-Analyst software101

(developed in the European InDev project4) was used to calculate cyclist velocities and trajectories102

(Johnsson, Norén, Laureshyn, and Ivina 2018). In this framework, T-calibration allows for ground-103

plane calibration of monocular traffic camera footage from manually annotated scene points in both104

the traffic camera footage and a satellite image (with scale) of the recording location (e.g. Google105

Earth) (Tsai 1987) (see Figure 4). Once calibrated, 3D bounding boxes were annotated for each106

frame, corresponding to discrete cyclist positions over time on the X-Y plane (ground). Tracks107

were annotated in a similar way, using points on the ground plane. For cases involving straight108

tracks a cardinal axis along the track was defined during calibration, and for curved tracks pixel109

coordinates were annotated along the track and a 2nd order polynomial was fitted in post-processing.110

4https://cordis.europa.eu/project/id/635895/
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Figure 4: Ground plane calibration for Westmoreland St./College St. (Camera 7).

For calculation of crossing angles (0-90°) and velocities (m/s), a time window was defined based on111

visual inspection using frames before and after crossing for SCs and only frames before crossing112

for UCs. Crossing angles were calculated as angles between line segments representing the track113

and the cyclist trajectory at that location. Frame-based velocity estimates were calculated from114

trajectories using the central difference method and the camera framerate, and averaged across the115

window. Cases were excluded if the view of the cyclist was obstructed, the initial track interaction116

occurred out of frame, or if tracking confidence was affected by distance from the camera (image or117

calibration quality).118

3.6 Statistical analysis and predictive modelling of crossing success119

Binary logistic regression modelling was used to establish the combined effects of crossing angle120

and velocity on crossing success (Equation 1).121

𝑝 = 𝑃 (𝑌 = 1|𝑋 = 𝑥1, . . . , 𝑋𝑖 = 𝑥𝑖) = 𝑒𝛼+𝛽1𝑥1 · · ·+𝛽𝑖 𝑥𝑖
1+𝑒𝛼+𝛽1𝑥1 · · ·+𝛽𝑖 𝑥𝑖 (1)

where the dependent variable Y takes two values (1, 0), 𝛽𝑖 are the coefficients estimated122
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using the method of maximum likelihood and 𝑥𝑖 are the predictor variables. In modelling, a random123

sample of SCs across the study locations was used. To satisfy the assumption of ’independence of124

observations’, only one crossing of one track is included for each cyclist. Both effect estimation125

and predictive modelling were considered, and three models were created, one for effect estimation126

(a) and two for predictive modelling (b & c). Model (b) was derived using crossing angle (𝜃)127

as the independent variable (IV), whereas for model (c) 𝜃 was transformed into EW (Figure 2).128

For effect estimation (model (a)), all variables were included, while for predictive modelling only129

significant variables were included (Harrell 2015). A Pearson correlation coefficient was computed130

to determine the relationship between IVs, indicating non-significant relationships between velocity131

and (1) (r(108) = -0.046, p=0.64), and (2) EW (r(108) = -0.008, p=0.936). The IVs were found132

to be linearly related to the logit of the dependent variable (crossing success) via the Box-Tidwell133

procedure, with p > 0.05. No outliers were found (absolute value of standardised residual greater134

than 2.5). Predictive models are used in the definition of a SMoS for cyclist-tram track interactions.135

For this purpose, Equation 2 is defined for predicting the number of UCs (𝑁𝑈𝐶) at a site over a period136

of time using a representative random sample of estimated crossing angles (𝜃 = [𝜃1, . . . , 𝜃𝑀]), and137

a count of cyclist numbers (𝑁𝐶).138

𝑁𝑈𝐶 = 𝑁𝐶 ×
∑𝑀

𝑚=1

{
1− 𝑒𝛼+𝛽𝑥𝑚

1+𝑒𝛼+𝛽𝑥𝑚

}
𝑀

(2)

where 𝛼, 𝛽 are taken from the modelling, and 𝑥 = 𝜃 for model (b), or
[

𝐺𝑎𝑝

𝑠𝑖𝑛(𝜃1)) , . . . ,
𝐺𝑎𝑝

𝑠𝑖𝑛(𝜃𝑀 ))

]
139

for model (c).140
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3.7 Domain-specific cyclist detection141

Many deep learning-based object detection algorithms exist, however, YOLO is considered the142

state-of-the-art for real-time object detection (Wang, Bochkovskiy, and Liao 2022). The native143

model has a general-purpose object detector trained on the Microsoft Common Objects in Context144

(MS COCO) dataset (Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, and Zitnick 2014).145

However, differences in image viewpoints, qualities, and textures between MS COCO training146

images and domain-specific Dublin city images may result in sub-optimal performance.147

For the purposes of domain transfer, a Convolutional Neural Network (CNN) which is148

pre-trained on a large dataset can be retrained using a comparatively small amount of data for149

the same task but in a different domain. The YOLO object detection model has been shown to150

yield successful domain-specific results after further learning on domain specific examples e.g.151

(Tabassum, Ullah, Al-Nur, and Shatabda 2020) 5. The YOLOv5x model was used as a base for the152

task. This is the largest (166MB) and best performing YOLO model in terms of Mean Average153

Precision (50.7mAP𝑐𝑜𝑐𝑜), i.e., the object detector predicts classes with bounding boxes, and the154

mAP is a single value used to score how well detections are made across all classes .155

Person and bicycle classes were annotated for 259 images across the collected data 6, 233156

of which were used for retraining the model, and 26 were held for validation (10% of the total).157

Training was performed for 50 epochs, with a batch size of 4 on an Intel® Core™ i7-9700 processor.158

5https://github.com/ultralytics/yolov5/
6https://github.com/ManivannanMurugavel/Yolo-Annotation-Tool-New-/
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4 Results159

4.1 Data summary160

Table 1 shows a summary of the collected data. A total of 2,905 cyclist interactions with tram tracks161

were surveyed over two periods with wet road conditions. Extracted footage includes 13 UCs (4 Cat.162

1, 5 Cat. 2, and 4 Cat. 3 – see Table 4), and a random sample of the total (2,891) SCs. A total of 9163

UCs were identified over Period 1 (7 hours) out of 2,741 cyclists, corresponding to an UC rate of164

3.3x10−3 (approx. 3 in a 1000). A higher rate was observed in Camera 7 (Westmoreland St./College165

St.) (4 UCs for 213 cyclists), and a further 5 hours of footage was examined in this location (Period166

2), during which a further 4 UCs were noted. Overall, this location has a UC rate of 2.1x10−2, or 21167

in 1,000.168

Table 1: Summary description of the study data, and UC risk estimates.
Camera No. cyclists Hours UC UC/No. cyclists UC/Hour

1 198 7 1 0.005 0.143
2 145 7 0 0 0
3 181 7 1 0.005 0.143
4 116 7 0 0 0

5&6 410 7 1 0.002 0.143
7 377 12 8 0.021 0.667
8 324 7 1 0.003 0.143
9 551 7 1 0.002 0.143
10 603 7 0 0 0

Total 2,905 68 13 0.004 0.191

4.2 Site study: Camera 1169

The majority of crossings at this location (Abbey St./Beresford St.) were at the nearside of the road170

at a safe crossing angle (𝜃 = 38°) (Figure 5). The single fall at this location occurred further down171
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Figure 5: Trajectory analysis of cyclist interactions with a track at Abbey St./Beresford St. (Camera
1).

the tracks where the cyclist travelled more parallel to the tracks, and was passed by a motorised172

vehicle while crossing (𝜃 = 14°) (Figure 6).173

4.3 Site study: Camera 7174

Most UCs at this location occurred on the inside track (N=7, 87%), and the analysis focused on these175

cases. Trajectories of 6 UCs and a random sample of 7 SCs over the inside track were annotated for176

Camera 7 (Figure 7). Mean crossing angles were higher for SCs (𝜃 = 17°, SD = 3.5), compared177

to UCs (𝜃 = 10°, SD = 5.9). The results of a Mann-Whitney U test indicate significant difference178

between groups (U = 8, p = 0.03). Average velocities were similar: 4.2m/s for SCs vs. 4.0m/s for179

UCs. Falls on the inside kerb were common, and crossing angles were low for both SCs and UCs (≤180

20° - excluding one case with intentional mounting of the kerb). This is likely due to the proximity181

of the nearside kerb (1.16m from the track on average), which limits crossing angle.182

4.4 Multivariable testing and predictive modelling for crossing success183

Vectors representing the trajectories for UCs and SCs included in the modelling analysis are shown184

in Figure 8. Mean crossing angles and velocities (and their standard deviations) are also included.185
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Figure 6: Cat. 3 fall at Abbey St./Beresford St. (Camera 1).

Figure 7: Trajectory analysis of cyclist interactions with the inside track at Westmoreland St./College
St. (Camera 7).
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Figure 8: Crossing angles and velocities (vector magnitudes).

Mean crossing angles are notably shallower for UCs (10° vs. 43°), while mean velocities are very186

similar (4.7m/s vs. 4.8m/s).187

4.4.1 Model (a) Effect Estimation188

Binary logistic regression modelling was used to assess the combined effect of crossing angle and189

velocity, and to define a predictive model for crossing success. Only crossing angle was significant,190

see Table 5. The model was statistically significant 𝜒2(2) = 39.017, p < 1x10−8, Nagelkerke R2:191

74%.192

4.4.2 Model (b) Predictive Modelling Using 𝜃 as the IV193

Model (b) was also statistically significant, 𝜒2(1) = 37.980, p < 1x10−9, Nagelkerke R2: 72% (Figure194

9). It correctly classified 96% of cases, and the area under the Receiver Operating Characteristic195

(ROC) curve was 0.98 (95% CI: 0.956-1.000) (Figure 19), considered an outstanding level of196

discrimination (Hosmer, Lemeshow, and Sturdivant 2013).197
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Figure 9: SC probability risk curve by crossing angle with 95% confidence levels for model (b).

SC probabilities for various crossing angles based on model (b) are shown in Figure 10.198

Results place the boundary for the definition of a minimum ‘safe’ crossing angle in the region of199

25-30°. Below this, the probability of a SC decreases dramatically. Most notably, between 17.5°200

and 10° the probability of a SC drops from 0.85 to 0.22.201

4.4.3 Model (c) Predictive Modelling Using 𝐸𝑊 as the IV202

Model (c) was also statistically significant, 𝜒2(1) = 33.987, p < 1x10−8, Nagelkerke R2: 70%, and203

the area under the Receiver Operating Characteristic (ROC) curve was the same as model (b) 0.98204

(95% CI: 0.956-1.000). Using this, approximate risk curves can be defined for a variety of track205

types (Fig 11).206

SC probabilities for various crossing angles based on model (c) are shown in Figure 12,207

showing slightly different results to model (b) (Figure 10). Although these findings also place the208

15



A video-based assessment of cyclist-tram track interactions in wet road conditions

Figure 10: SC probabilities for various crossing angles from model (b).

Figure 11: Approximate SC probability risk curves for various track types, vs. crossing angle,
calculated as a function of effective track width from model (c).

16



A video-based assessment of cyclist-tram track interactions in wet road conditions

Figure 12: SC probabilities for various crossing angles from model (c) (Groove gap = 42.36mm).

boundary for minimum ‘safe’ crossing angles in the region of 25-30°, for lower crossing angles the209

associated SC probabilities drop more rapidly. For example, between 17.5° and 10° the probability210

of a SC drops from 0.9 to 0.1.211

4.5 Application of predictive models for SMoS212

Section 4.4 showed there are some differences in risk curves between predictive models (b) and213

(c). Table 2 shows the effect of the chosen model on the prediction of UC numbers, i.e. in the214

application of Equation 2. Although the models deviate somewhat for shallower crossing angles215

(<25°), in application they predict very similar 𝑁𝑈𝐶 levels.216
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Table 2: Predicted numbers of UCs for models (b) and (c), where 𝑁𝐶=1,000, and 𝑀=100, with
randomly generated angles (𝜃) within a stated range.

𝜃 range Model (b) Model (c) % diff
0-10° 946 993 2%
0-20° 614 617 0%
0-30° 527 537 1%
0-40° 327 336 1%
0-50° 309 322 2%
0-60° 268 269 0%
0-70° 145 149 1%
0-80° 142 149 2%
0-90° 191 194 1%

4.6 Further training for domain-specific cyclist detection217

Figure 13 shows the accuracy results for YOLOv5x after further training on domain-specific Dublin218

city images.219

Figure 14 shows a qualitative comparison of inference accuracy between the native YOLOv5x,220

and the retrained model YOLOv5xDCC (confidence threshold=0.6) for cases in the test set. Further221

results on videos are available7.222

4.7 Automatic vs. manual tracking223

Inference was performed using model YOLOv5xDCC for a sample of 5 SCs, and 1 UC at camera 1224

to compare estimated crossing angles between manual and automatic approaches. A point at the225

lower end of the bounding box (𝑦 = 0.25ℎ, 𝑥 = 0.5𝑤) was used for the ground position in each226

frame, and a Savitzky-Golay filter was used for smoothing. Crossing angles were broadly similar;227

the automatic tracking yielded an average of 36°, compared to 37° for manual tracking (see Table 3,228

and Figure 15).229

7https://github.com/KevGildea/SafeCross/tree/main/YOLOv5xDCC/Examples/
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Figure 13: Accuracy results for YOLOv5x after further training on domain-specific Dublin city
images.

5 Discussion230

High overall incidence of UCs was observed over this short study period with limited coverage of the231

track network, highlighting the significance of the safety issue. These findings support results from232

a self-reporting collision survey (Gildea, Hall, and Simms 2021). One location had a particularly233

high risk (Camera 7: Westmoreland St./College St), and an additional UC was noted for an adjacent234

study location (Cameras 5&6: College Green). Overall UC rates were approx. 21/1000 cyclists at235

Camera 7, vs. approx. 3/1000 overall. These findings are similar to a study in the US for railway236

tracks, which found fall rates of 2/1000 at one location, and 15/1000 at another (Ling, Cherry, and237

Dhakal 2017), from a sample including over 13,000 cyclist traversings over a 2 month period. By238

comparison, the sample in this study was over only 7 hours over 8 locations around the city (plus an239
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Figure 14: Visualisation of model improvements between YOLOv5x and YOLOv5xDCC for a
sample of images.

added 5 hours for camera 7).240

At Camera 7: Westmoreland St./College St, the majority of UCs (N=7, 87%) occurred on the241

inside/nearside track where a kerb runs alongside in close proximity (see Figure 7). UCs at this242

location are likely due to the proximity of this kerb. All crossings in this location (including both243

UCs and SCs) are far below the mean crossing angle seen across other locations. For SCs, crossing244

angles at this location were an average of 17° vs. 43° overall. Extending the roadway at this location245

to allow for safe crossing angles would likely have a significant impact on the fall rates. The authors246

recommend physical separation of cyclists from tram tracks, and at locations where cyclists are247

expected to cross tracks, sufficient space should be available for a safe approach angle. Furthermore,248
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Case Manual Automatic
SC 1 44° 43°
SC 2 33° 34°
SC 3 41° 38°
SC 4 36° 35°
SC 5 32° 31°
UC 1 14° 15°

Table 3: Comparison of crossing trajectories for a sample of cases at camera 1.

Figure 15: Comparison of crossing trajectories for a sample of cases at camera 1.

by visual inspection, most (N=12, 92%) UCs at other locations involve obstacles that limit crossing249

angle, i.e. kerbs or nearby/passing vehicles/other cyclists (Table 4). The Safe System approach calls250

for prioritisation of system level redesign over attempts to influence individual behaviour (ITF 2016),251

therefore, the authors recommend engineering interventions be prioritised to allow for safe crossing252

angles. Furthermore, since many cases involve a passing/nearby motorised vehicles (N=4, 31%), the253

authors recommend efforts to increase priority for cyclists at crossings, and provision of segregated254

lanes where possible. Indeed, international literature indicates that traffic pressure contributes to the255

majority of falls on tram tracks (Maempel, Mackenzie, Stirling, McCann, Oliver, and White 2018).256

Descriptive statistics (Figure 8) show that while mean crossing velocities are similar across257

SCs and UCs (4.8m/s vs. 4.7m/s), mean crossing angles were not (43° vs. 10°). Therefore, as258
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expected, from multivariable modelling, crossing angle was found to be a strong predictor of259

crossing success. Though crossing velocity was not a significant predictor (Table 5), similar to260

(Ling, Cherry, and Dhakal 2017), it is possible that velocity could factor into a multiclass predictive261

model. With this in mind, a multinomial regression was performed with crossing categories, i.e., a262

dependent variable with 4 levels (SC, UC-Cat. 1, UC-Cat. 2, UC-Cat. 3), however, the model was263

not statistically significant and had low discrimination. With a greater sample size, such a model264

may reveal predictive effects. As described in section 4.4, of the two predictive models (b & c),265

there are slight differences in risk curves. Specifically, while both models indicate that the boundary266

for the definition of a minimum ‘safe’ crossing angle in the region of 30°, SC probabilities vary267

below this. These differences are tested in the context of a potential SMoS for prediction of UC268

numbers (N𝑈𝐶) in section 4.5, showing that both models predict similar numbers in application,269

though model (c) generally predicts slightly higher numbers. Furthermore, model (c) allows for270

approximate risk estimates for crossings on tracks with different groove gap widths, which may be271

useful for other locations with different track types.272

Infrastructural planners in Dublin/Ireland should plan for road designs that allow for and273

encourage crossing angles of 30° or more. However, for site-specific infrastructural planning it may274

be difficult to account for all common cyclist trajectories, highlighting the potential utility of this275

SMoS framework.276

Proof-of-concept is provided that further training on a relatively small sample of domain277

specific data can achieve substantial accuracy improvements for cyclist detection in traffic camera278

footage. The accuracy of the native YOLOv5x model applied to DCC data was 0.65mAP0.5, i.e., with279

an Intersection over Union (IoU) threshold of 0.5, after training this rose dramatically to 0.99mAP280

(Figure 13). Averaging mAP for IoU thresholds between 0.5 and 0.95 (as per (Huang, Rathod, Sun,281

Zhu, Korattikara, Fathi, Fischer, Wojna, Song, Guadarrama, and Murphy 2017)) showed similar282
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improvements, from 0.32mAP0.5:0.95 to 0.75 mAP0.5:0.95. Qualitatively, these improvements are283

also observed between the models (Figure 13). Furthermore, in application, automatically inferring284

trajectories using the YOLOv5xDCC model yields very similar crossing angles to manual tracking.285

Future work will incorporate automatic cyclist trajectory detection into the SafeCross application,286

which after after ground-plane calibration, i.e., T-Calibrate (Johnsson, Norén, Laureshyn, and Ivina287

2018), may allow for semi-automatic prediction of unsuccessful crossings (see Figure 17).288

Figure 16: SafeCross tool.
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6 Conclusions289

This study presents the first video-based trajectory and fall analysis for cyclist interactions with light290

rail tram-tracks. The analysis focuses on wet road conditions as a common and safety-critical edge291

case. Actionable site-specific safety issues at locations in Dublin city centre are highlighted, and292

the risk of UC occurrence by crossing angle is modelled. As evident by the prevalence of external293

factors limiting crossing angle (e.g. kerbs, other road users), personal responsibility/educational294

campaigns targeted towards cyclists are unlikely to address the majority of falls on tracks. In the295

context of the Safe System approach, i.e., to proactively target and treat risk, these findings imply the296

need for bolstered data collection regimes in urban environments, and engineering interventions to297

facilitate safe crossing angles. The use of the validated SMoS algorithm developed in this study can298

help achieve these goals, and an open-source application is provided for this purpose (SafeCross8)299

(see Figure 16).300

8https://kevgildea.github.io/SafeCross/
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Figure 17: Proposed pipeline for prediction of UCs on tram tracks.
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Appendices372

Figure 18: Profile of the 59R2 (Ri59N) grooved rail.
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Table 4: All UCs noted in this study.

Cont...
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Table 5: Results for regression model (a).
95% C.I.for Exp(𝛽)

𝛽 S.E Wald df Sig. Exp(𝛽) Lower Upper
Crossing angle .489 .215 5.152 1 .023 1.630 1.069 2.486

Velocity .671 .745 .812 1 .368 1.957 .454 8.431
Constant -9.621 5.804 2.748 1 .097 .000

Table 6: Results for regression model (b).
95% C.I.for Exp(𝛽)

𝛽 S.E Wald df Sig. Exp(𝛽) Lower Upper
Crossing angle .405 .161 6.328 1 .012 1.500 1.094 2.057

Constant -5.317 2.478 4.605 1 .032 .005

Table 7: Results for regression model (c).
95% C.I.for Exp(𝛽)

𝛽 S.E Wald df Sig. Exp(𝛽) Lower Upper
EW -.043 .014 9.949 1 .002 .958 .932 .984

Constant 8.294 2.170 14.608 1 .000132 4000.460198
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Figure 19: Receiver Operating Characteristic (ROC) curve for model (b).
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